矩阵A可逆的充要条件是|A|不等于0,而只有方阵才有行列式,所以只有方阵才有逆阵.但是[1 2](1×2阶)×[-1 1](2×1阶)=E,而[1 2]却不是方阵,

问题描述:

矩阵A可逆的充要条件是|A|不等于0,而只有方阵才有行列式,所以只有方阵才有逆阵.但是[1 2](1×2阶)×[-1 1](2×1阶)=E,而[1 2]却不是方阵,

可逆的前提就是矩阵要是方阵
这里虽然他俩乘积是E,但是并不是方阵,所以就不能扯到可逆上
而且可逆的条件是AB=BA=E,如果A和B不是方阵,那么AB与BA就不是相同大小的矩阵
有疑问继续追问!我这个AB不等于BA.所以是错的这只是次要的原因,主要原因是他俩不是方阵,可逆这个概念只是针对于方阵的呵呵,我就是想问为什么只有方阵才可逆已经知道了