已知x2+y2=2,求x2-2xy-y2的取值范围
问题描述:
已知x2+y2=2,求x2-2xy-y2的取值范围
答
答:
x^2+y^2=2
设x=√2cost,y=√2sint
x^2-2xy-y^2
=2(cost)^2-4sintcost-2(sint)^2
=2cos2t-2sin2t
=2√2cos(2t+45°)∈[-2√2,2√2]
所以:取值范围是[-2√2,2√2]=2��2cos(2t+45��)��[-2��2��2��2]����Ӧ����2t-45����ע��������cos(2t+45��)�����Ҳ���sin(2t-45��)