双曲线与反比例函数的问题
问题描述:
双曲线与反比例函数的问题
发现 y=1/x 符合双曲线的定义,焦点为(√2,√2),离心率为√2.
是不是所有形如 y=a(x+n)++c 的函数都符合双曲线的定义?
来回答的带证明过程,谢谢.
b不为0, n=m
答
设 双曲线标准方程为X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)
而反比例函数的标准型是 xy = c (c ≠ 0)
但是反比例函数确实是双曲线函数经过旋转得到的
因为xy = c的对称轴是 y=x,y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是x轴,y轴
所以应该旋转45度
设旋转的角度为 a (a≠0,顺时针)
(a为双曲线渐进线的倾斜角)
则有
X = xcosa + ysina
Y = - xsina + ycosa
取 a = π/4
则
X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2
= (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2
= 4 (√2/2 x) (√2/2 y)
= 2xy.
而xy=c
所以
X^2/(2c) - Y^2/(2c) = 1 (c>0)
Y^2/(-2c) - X^2/(-2c) = 1 (c