在△ABC中,已知(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC.(1)求角A的值;(2)求3sinB−cosC的最大值.
问题描述:
在△ABC中,已知(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC.
(1)求角A的值;
(2)求
sinB−cosC的最大值.
3
答
(1)∵(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC,
∴(sinB+sinC)2-sin2A=3sinBsinC,
∴sin2B+sin2C-sin2A-sinBsinC=0,
由正弦定理
=a sinA
=b sinB
=2R得:b2+c2-a2-bc=0,c sinC
又由余弦定理知,a2=b2+c2-2bccosA,
∴cosA=
,角A=60°.1 2
(2)∵角A=60°,在△ABC中,A+B+C=180°,
∴B=120°-C,
∴
sinB-cosC
3
=
sin(120°-C)-cosC
3
=
(
3
cosC-(-
3
2
)sinC)-cosC1 2
=
cosC+1 2
sinC
3
2
=sin(C+
),π 6
∵C∈(0°,120°),
∴[sin(C+
)]max=1,即π 6
sinB-cosC得最大值为1.
3