已知log12(27)=a,证明log6(16)=[4(3-a)]/3+a
问题描述:
已知log12(27)=a,证明log6(16)=[4(3-a)]/3+a
答
本题多次应用换底公式.
log12(27)=log3(27)/log3(12)
=3/log3(3*4)
=3/[log3(3)+log3(4)]
=3/[1+log2(4)/log2(3)]………………这里是两个分式,写到纸上就明白了.
=3/[1+2/log2(3)]
=a
所以log2(3)=2a/(3-a)…………这才是化简真正想要的
再看所给的式子
log6(16)=log2(16)/log2(6)
=4/log2(2*3)
=4/[1+log2(3)]
将上面所求的log2(3)=2a/(3-a)代入就会得到
上式=4/[1+2a/(3-a)]
=4/[(3-a+2a)/(3-a)]…………同分
=4(3-a)/(3+a)
证明完毕
过程很具体,不知道是不是你想要的.