设f(x,y,z)可微,对一切t不等于0,有f(tx,ty,tz)=tf(x,y,z),试证:xf'(x)+yf'(y)+zf'(z)=nf(x,y,z)

问题描述:

设f(x,y,z)可微,对一切t不等于0,有f(tx,ty,tz)=tf(x,y,z),试证:xf'(x)+yf'(y)+zf'(z)=nf(x,y,z)
那位大哥大姐帮帮忙啊...T_T.

这个叫欧拉公式(顺便说一下,你那个式子右边的t应该是少了个n次方),证明可以两边对t求偏导再令t=1得到,只要你会基本的微积分的话……