当f(x)的3阶导数在点X=0处存在,就可以对f(x)在0处的极限使用洛必达法则,这时为什么?

问题描述:

当f(x)的3阶导数在点X=0处存在,就可以对f(x)在0处的极限使用洛必达法则,这时为什么?
李永乐的全书不是一直强调只有当f(x)的1阶导数在点X=0的邻域存在时才可以使用洛必达法则吗?当李的全书上在当f(x)的3阶导数在点X=0处存在,就说可以对f(x)在0处的极限使用洛必达法则,对f'(x)在0处的极限又不能使用了.难道当f(x)的3阶导数在点X=0处存在就说明f'(x)在0的邻域存在?

当f(x)的3阶导数在点X=0处存在,不但f'(x)在0的邻域存在,f''(x)也是存在的.因为二阶导数存在的前提是一阶导数存在,而三阶导数存在的前提是二阶导数存在.即二阶导数是一阶导函数的导数,而三阶导数是二阶导函数的导数.希望这次的回答对你有用