已知数列a1,a2,a3为等比数列,数列a2,a3,a4为等差数列,且a1+a4=16,a2+a3=12,求a1,a2,a3,a4=?
问题描述:
已知数列a1,a2,a3为等比数列,数列a2,a3,a4为等差数列,且a1+a4=16,a2+a3=12,求a1,a2,a3,a4=?
答
假设公比为q,则a2=a1*q,a3=a1*q^2,a4=a3+(a3-a2)=a1(2q^2-q)所以a1+a1(2q^2-q)=16,a1*q+a1*q^2=12解得a1=1,q=3,或者a1=16,q=1/2所以a1=1,a2=3,a3=9,a4=15或者a1=16,a2=8,a3=4,a4=0