f(X)=X的平方在X=1处的切线方程是 A.x+2y-1=0 B,x-2y-1=0 C.2x+y-3=0 D.2x-y-1=0
问题描述:
f(X)=X的平方在X=1处的切线方程是 A.x+2y-1=0 B,x-2y-1=0 C.2x+y-3=0 D.2x-y-1=0
答
y=x^2 过点 (1,1)
y'=2x 过点 (1,1)切线斜率=2*1=2
=>切线 y=2(x-1)+1=2x-1 => 2x-y-1=0.(d)
or 切线 y=m(x-1)+1=mx+1-m与y=x^2联立
=> x^2-mx+m-1=0两等根 => (-m)^2 - 4(m-1)=m^2-4m+4=(m-2)^2=0
=> m=2=>切线 y=2(x-1)+1=2x-1 => 2x-y-1=0.(d)