求和:1+4/5+7/52+…+3n−25n−1.
问题描述:
求和:1+
+4 5
+…+7 52
. 3n−2 5n−1
答
设Sn=1+
+4 5
+…+7 52
+3n−5 5n−2
①3n−2 5n−1
则
Sn=1 5
+1 5
+4 52
+…+7 53
+3n−5 5n−1
②3n−2 5n
①-②得:
Sn=1+4 5
+3 5
+…+3 52
−3 5n−1
3n−2 5n
=1+3×
−
(1−1 5
)1 5n−1 1−
1 5
3n−2 5n
=
7×5n−12n−7 4×5n
∴Sn=
7×5n−12n−7 16×5n−1