求和:1+4/5+7/52+…+3n−25n−1.

问题描述:

求和:1+

4
5
+
7
52
+…+
3n−2
5n−1

设Sn=1+

4
5
+
7
52
+…+
3n−5
5n−2
+
3n−2
5n−1
   ①
1
5
Sn=
1
5
+
4
52
+
7
53
+…+
3n−5
5n−1
+
3n−2
5n
     ②
①-②得:
4
5
Sn=1+
3
5
+
3
52
+…+
3
5n−1
3n−2
5n

=1+3×
1
5
(1−
1
5n−1
)
1−
1
5
3n−2
5n

=
5n−12n−7
5n

∴Sn=
5n−12n−7
16×5n−1