若a.b.c都是正整数,且至少有一个不为1,a^xb^yc^z=a^yb^zc^x=a^zb^xc^y=1,讨论x,y,z所满足的关系式
问题描述:
若a.b.c都是正整数,且至少有一个不为1,a^xb^yc^z=a^yb^zc^x=a^zb^xc^y=1,讨论x,y,z所满足的关系式
答
a^x * a^y * a^z)*(b^x * b^y * b^z)*(c^x * c^y * c^z)=(abc)^(x+y+z)=(a^x * b^y * c^z) * (a^y * b^z * c^x) * (a^z * b^x * c^y)=1*1*1=1(abc)^(x+y+z)=1x+y+z = 0或abc=1 a=1/bc 代入a^x*b^y*c^z有b^(y-x)*c(z-...