一动圆截直线 3x-y=0 和 3x+y=0 所得弦长分别为8和4,求动圆圆心的轨迹方程
问题描述:
一动圆截直线 3x-y=0 和 3x+y=0 所得弦长分别为8和4,求动圆圆心的轨迹方程
一动圆截直线 3x-y=0 和 3x+y=0 所得弦长分别为8和4,求动圆圆心的轨迹方程.
答
设圆心x,y.点到直线距离公式.勾股定理.半径相等.懂不懂了,有思路就行