若xy=2,求1/(4x^2)+1/(9y^2)的最值
问题描述:
若xy=2,求1/(4x^2)+1/(9y^2)的最值
答
∵xy=2, ∴Y=2/X
1/(4x^2)+1/(9y^2)=1/4X²+1/(9(2/X)²)=1/4(1/X²+X²/9)
由a²+b²≥2ab得1/X²+X²/9≥ 2×(1/x )( x/3 ) ∴ 1/X²+X²/9≥6
1/(4x^2)+1/(9y^2)≥6/4
1/(4x^2)+1/(9y^2)的最小值是3/2