设f(x),g(x)和h(x)是实数域上的多项式,证明f(x)的平方=xg(x)平方+xh(x)平方,那么那么f(x)=g(x)=h(x)=0
问题描述:
设f(x),g(x)和h(x)是实数域上的多项式,证明f(x)的平方=xg(x)平方+xh(x)平方,那么
那么f(x)=g(x)=h(x)=0
答
假设f(x)并非恒等于0,设f(x),g(x),h(x)的次数分别是a,b,c,那么由式子可以得到2a=max(1+2b,1+2c),左边是偶数,右边是奇数,这不可能.所以f(x)恒等于0,于是由平方的非负性可以得到f(x)=g(x)=h(x)=0