已知函数y=(a+2)x2-2(a2-1)x+1,其中自变量x为正整数,a也是正整数,求x何值时,函数值最小.
问题描述:
已知函数y=(a+2)x2-2(a2-1)x+1,其中自变量x为正整数,a也是正整数,求x何值时,函数值最小.
答
∵y=(a+2)x2-2(a2-1)x+1,∴y=(a+2)(x−a2−1a+2)2+1-(a2−1)2a+2,其对称轴为x=a2−1a+2=(a−2)+3a+2,因为a为正整数,故因0<3a+2≤1,a−2<a2−1a+2≤a−1,因此,函数的最小值只能在x取a-2,a-1,a2−1...