设a,bR,且a>0,函数f(x)=x^2+ax+2b,g(x)=ax+b,且区间[-1,1]上g(x)的最大值是2,则f(2)等于A4B8C10D16

问题描述:

设a,bR,且a>0,函数f(x)=x^2+ax+2b,g(x)=ax+b,且区间[-1,1]上g(x)的最大值是2,则f(2)等于A4B8C10D16

g(x)是直线 a大于0所以递增 在1点有最大值 所以 a+b=2 f(2)=2^2+2a+2b=8