用牛顿-莱布尼茨公式计算定积分
用牛顿-莱布尼茨公式计算定积分
∫ a dx = ax + C,a和C都是常数
∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
∫ 1/x dx = ln|x| + C
∫ a^x dx = (a^x)/lna + C,其中a > 0 且 a ≠ 1
∫ e^x dx = e^x + C
∫ cosx dx = sinx + C
∫ sinx dx = - cosx + C
∫ cotx dx = ln|sinx| + C
∫ tanx dx = - ln|cosx| + C = ln|secx| + C
∫ secx dx = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = ln|secx + tanx| + C
∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C
∫ sec^2(x) dx = tanx + C
∫ csc^2(x) dx = - cotx + C
∫ secxtanx dx = secx + C
∫ cscxcotx dx = - cscx + C
∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C
∫ dx/√(a^2 - x^2) = arcsin(x/a) + C
∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C
∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C
∫ √(x^2 - a^2)dx=x/2√(x^2 - a^2)-a^2/2ln[x+√(x^2 - a^2)] + C
∫ √(x^2 +a^2)dx=x/2√(x^2 +a^2)+a^2/2ln[x+√(x^2 +a^2)] + C
∫ √(a^2 - x^2)dx=x/2√(a^2 - x^2)+a^2/2arcsin(x/a) + C书上有arctan1怎么算的?
谢了