若X,Y是整数,求证:(x+y)(x+2y)(x+3y)(x+4y)+y的四次方是一个完全平方数
问题描述:
若X,Y是整数,求证:(x+y)(x+2y)(x+3y)(x+4y)+y的四次方是一个完全平方数
急 THANKS!
答
(x+y)(x+2y)(x+3y)(x+4y)+y^4=[(x+y)(x+4y)][(x+2y)(x+3y)]+y^4=[(x^2+5xy)+4y^2][(x^2+5xy)+6y^2]+y^4=(x^2+5xy)^2+10y^2(x^2+5xy)+24y^4+y^4=(x^2+5xy)^2+10y^2(x^2+5xy)+25y^4=(x^2+5xy+5y^2)^2