已知圆C同时满足三个条件,求圆C 方程
问题描述:
已知圆C同时满足三个条件,求圆C 方程
1与y 轴相切,2在直线y =x 上截得弦长为2倍根号7,3圆心在直线x-3y=0上.
答
3圆心在直线x-3y=0上. 设圆心为(3a,a)
1与y 轴相切 可得半径为:|3a|
在直线y =x 上截得弦长为2倍根号7 可得:
|3a|^2-|3a-a|^2/2=(√7)^2
9a^2-2a^2=7
即:a^2=1 所以可得:a=±1
当a=1时圆的方程为:(x-3)^2+(y-1)^2=9
当a=-1时圆的方程为:(x+3)^2+(y+1)^2=9