已知两直线l1:x+ysinθ-1=0和l2:2xsinθ+y+1=0,试求θ的值,使得:(1)l1∥l2;(2)l1⊥l2.
问题描述:
已知两直线l1:x+ysinθ-1=0和l2:2xsinθ+y+1=0,试求θ的值,使得:(1)l1∥l2;(2)l1⊥l2.
答
(1)由A1B2-A2B1=0,即2sin2θ-1=0,得 sin2θ=
,∴sinθ=±1 2
.
2
2
由B1C2-B2C1≠0,即1+sinθ≠0,即 sinθ≠-1.综上,sinθ=±
,θ=kπ±
2
2
,k∈Z,π 4
∴当θ=kπ±
,k∈Z时,l1∥l2.π 4
(2)∵A1A2+B1B2=0是l1⊥l2的充要条件,∴2sinθ+sinθ=0,
即sinθ=0,∴θ=kπ(k∈Z),∴当θ=kπ,k∈Z时,l1⊥l2.