已知x+y+z=3,且(x-1)立方+(y-1)立方+(z-1)立方=0,求证x,y,z中至少有一个为1
问题描述:
已知x+y+z=3,且(x-1)立方+(y-1)立方+(z-1)立方=0,求证x,y,z中至少有一个为1
答
由已知得:(x-1)+(y-1)+(z-1)=0又(x-1)^3+(y-1)^3+(z-1)^3=[(x-1)+(y-1)+(z-1)]·[(x-1)^2+(y-1)^2+(z-1)^2-(x-1)(y-1)-(y-1)(z-1)-(z-1)(x-1)]+3(x-1)(y-1)(z-1)=3(x-1)(y-1...