已知复数z=x+yi,且|z-2|=√3,则y/x的最大值是 这个题能用二次函数的知识做

问题描述:

已知复数z=x+yi,且|z-2|=√3,则y/x的最大值是 这个题能用二次函数的知识做
已知复数z=x+yi,且|z-2|=√3,则y/x的最大值是 这个题能用二次函数的知识做吗?如果能,求详解

|z-2|=√3
(x-2)²+y²=3………………①
令y/x=k,则y=kx
代入①得:
(1+k²)x²-4x+1=0
△=16-4·(1+k²)≥0
解得,-√3≤k≤√3
所以,y/x的最大值为√3