求loga^b+logb^a的值

问题描述:

求loga^b+logb^a的值
已知a,b是方程(log2^x)^2-log2^x^2-2=0的两个根,求loga^b+logb^a的值.
--------------
我知道是通过两根之和和两根之积来做.
能算出a+b和a*b的答案.
请问多了log是怎么做出答案的?


由已知得:
log2^a+log2^b=2--------------1
log2^a*log2^b=-2-------------2

那么由1得:
lga/lg2 + lgb/lg2=2

(lga+lgb)=2lg2
由2得:
(lga/lg2)*(lgb/lg2)=-2
lga *lgb=-2(lg2)^2
因此 loga^b+logb^a

= lga/lgb + lgb/lga
=[(lga)^2+(lgb)^2]/(lga *lgb)
=[(lga+lgb)^2-2lga*lgb]/(lga*lgb)
= (lga+lgb)^2/(lga*lgb) - 2
=(2lg2)^2/[-2(lg2)^2] -2
=-2-2
=-4
应该很详细了,能看懂么