Sn=x+2x^2+3x^3+.+nx^n(x不等于0)怎么求?
问题描述:
Sn=x+2x^2+3x^3+.+nx^n(x不等于0)怎么求?
答
x=1,Sn=1+2+……+n=略
x≠1
Sn=x+2x^2+3x^3+.+nx^n
xSn=x^2+2x^3+3x^4+.+(n-1)x^n+nx^(n+1)
相减
(x-1)Sn=-(x+x^2+x^3+.+x^n)+nx^(n-1)
=-x(x^n-1)/(x-1)+nx^(n+1)
Sn=-x(x^n-1)/(x-1)^2+nx^(n+1)/(x-1)