α1,α2...αm是m个n维列向量,且A是可逆的n阶可逆矩阵 证明当α1,α2...αm线性相关时,Aα1,Aα2...Aαm也线性相关,当α1,α2...αm线性无关时,Aα1,Aα2...Aαm也线性无关

问题描述:

α1,α2...αm是m个n维列向量,且A是可逆的n阶可逆矩阵 证明当α1,α2...αm线性相关时,Aα1,Aα2...Aαm也线性相关,当α1,α2...αm线性无关时,Aα1,Aα2...Aαm也线性无关