已知,如图,DE是三角形ABC的中位线,BF是∠ABC的平分线,BF、DE相交于点F
问题描述:
已知,如图,DE是三角形ABC的中位线,BF是∠ABC的平分线,BF、DE相交于点F
1.已知,如图,DE是三角形ABC中位线,BF是∠ABC的平分线,BF、DE相交于点F 求证:DB=DF 2.如图,在三角形ABC中,AG为BC上的高,E、D、F分别是边AB、BC、AC的中点 求证:四边形EDGF是等腰梯形
答
证明:∵,DE是三角形ABC中位线 ∴DE∥BC (三角形中位线平行于第三边) ∴∠DFB=∠FBC 又BF是∠ABC的平分线 ∴∠DBF=∠FBC ∴∠DBF=∠DFB(等量代换) ∴DB=DF(等角对等边)