各项为正数的等比数列{an},a4•a7=8,则log2a1+log2a2+…+log2a10=(  ) A.5 B.10 C.15 D.20

问题描述:

各项为正数的等比数列{an},a4•a7=8,则log2a1+log2a2+…+log2a10=(  )
A. 5
B. 10
C. 15
D. 20

由各项为正数的等比数列{an},a4•a7=8,
∴a1a10=a2a9=…=a4a7=…=8.
log2a1+log2a2+…+log2a10=log2(a1a2•…•a10)=log285=15.
故答案为:15.