设A=[4 2 3][1 1 0][-1 0 1],且有关系式AX=A+2X,求矩阵X.
问题描述:
设A=[4 2 3][1 1 0][-1 0 1],且有关系式AX=A+2X,求矩阵X.
答
因为 AX=A+2X所以 (A-2E)X = A(A-2E,A) =2 2 3 4 2 31 -1 0 1 1 0-1 0 -1 -1 0 1r1+2r3,r2+r30 2 1 2 2 50 -1 -1 0 1 1-1 0 -1 -1 0 1r1+2r20 0 -1 2 4 70 -1 -1 0 1 1-1 0 -1 -1 0 1ri*(-1),i=1,2,30 0 1 -2 -4 -70...