已知a不等于b,且a^2sin+acos-派/4=0 ,b^2sin+bcos-派/4=0,则连接(a,a^2),
问题描述:
已知a不等于b,且a^2sin+acos-派/4=0 ,b^2sin+bcos-派/4=0,则连接(a,a^2),
(b,b^2)两点的直线与单位圆的位置关系是 ( )
A.相交 B.相切 C.相离 D.不能确定
答
题目好像有问题
思路如下:
显然根据所给条件,可以得到
连接(a,a^2),(b,b^2)两点的直线的方程
把a替换成x,a^2替换成y就行了
然后计算(0,0)到直线的距离r
r=1相切
r>1相离
r