已知向量a=(cosx/2,sinx/2),b=(cosx/2,-sinx/2),c=(1,-1),求证(a+b)垂直于(a-b)设函数f(x)=(|a+c|平方-3)(|b+c|平方-3)(-π/2扫码下载作业帮拍照答疑一拍即得

问题描述:

已知向量a=(cosx/2,sinx/2),b=(cosx/2,-sinx/2),c=(1,-1),求证(a+b)垂直于(a-b)
设函数f(x)=(|a+c|平方-3)(|b+c|平方-3)(-π/2

扫码下载作业帮
拍照答疑一拍即得

1、(a+b)*(a-b)=|a|²-|b|²,因|a|=1,|b|=1,则(a+b)*(a-b)=0,即:(a+)垂直(a-b);
2、|a+c|²=|a|²+2a*c+|c|²=1+2[cos(x/2)-sin(x/2)]+2=3+2[cos(x/2)-sin(x/2)],|b+c|²=|b|²+2b*c+|c|²=1+2[cos(x/2)+sin(x/2)]+2=3+2[cos(x/2)+sin(x/2)],则f(x)=2[cos(x/2)-sin(x/2)]×2[cos(x/2)+sin(x/2)]==4[cos²(x/2)-sin²(x/2)]=4cosx
因x∈[-π/2,π/2],则cosx∈[0,1],f(x)∈[0,4],则f(x)最小值是0,最大值是4

(a+b).(a-b)
=(2cos(x/2),0).(0,2sin(x/2))
=0
=> (a+b)垂直于(a-b)
|a+c|^2
= (cos(x/2)+1)^2+(sin(x/2)-1)^2
= 3 + 2(cos(x/2)- sin(x/2))
=3+2√2cos(x/2+π/4)
|b+c|^2
= (cos(x/2)+1)^2+(-sin(x/2)-1)^2
=3+2(cos(x/2)+sin(x/2) )
= 3+2√2cos(x/2-π/4)
f(x)
=(|a+c|^2-3)(|b+c|^2-3)
= 8cos(x/2+π/4)cos(x/2-π/4)
f'(x) = -4[ cos(x/2-π/4)sin(x/2+π/4) + cos(x/2+π/4) sin(x/2-π/4) ]
=-4sinx =0
x = 0 or π
f''(x) = -4cosx
f''(0) = -4 f''(π) = 4 >0 (min)
max f(x)=f(0) = 4
minf(x) = f(π) =-4

向量a+向量b=(cosx/2+cosx/2,sinx/2-sinx2)=(2cosx/2,0)
向量a-向量b=(cosx/2-cosx/2,sinx/2-(-sinx/2)=(0,2sinx/2)
(a+b).(a-b)=2cosx/2*0+0*2sinx/2=0.
∴(a+b)⊥(a-b).
|a+c|^2=(cosx/2+1)^2+(sinx/2-1)^2=cos^2(x/2)+2cos(x/2)*1+1+sin^2(x/2)-2sixnx/2+1.
=2+1-2(simx/2-cosx/2).
=3-2√2si(x/2-π/4)
|b+c|^2 =(cosx/2+1)^2+(-sinx/2-1)^2
=cos^2x/2+2cosx/2*1+1+sin^2x/2+2sinx/2+1.
=3+2√2sin(x/2+π/4).
|a+c|^2-3=2√2(sin(x/2-π/4).
|b+c|^2-3=2√2(sin(x/2+π/4).
(|a+c|^2-3)(|b+c|^3-3)=(2√2)^2(sinx/2-π/4)[sin(x/2+π/4].
=4cosx.
∴f(x)=4cosx.cos
∵x∈[-π/2,π/2],当x=-π/2,或π/2时,f(x)min=0,当x=0时,f (x)max=4cos0=4
∴x∈【-π/2,π/2],f(x)max=4,f(x)min=0.