三角形两边中点的连线平行且等于 第三边,那么两边三分之二处的连线 是否平行于底边呢,该怎么证明呢
问题描述:
三角形两边中点的连线平行且等于 第三边,那么两边三分之二处的连线 是否平行于底边呢,该怎么证明呢
答
⊿ABC中,E是AB的中点,F是AC的中点,D是BC的中点 ∵AE=AB/2 AF=AC/2 ∠A=∠A ∴AE/AB=AF/AB ⊿ABC∽∠AEF ∴EF∥BC EF=BC/2 又AP=AB/3 AQ=AC/3 BG=BC/3 ∠A=∠A ∴AP/AB=AQ/AB ⊿ABC∽∠APQ ∴PQ∥BC 同理PG∥AC QG∥AB