不等式ax^2+bx+c>0,解集为区间(-1/2,2),对于系数a,b,c,则有如下结论:1)a>0 2)b>0 3)c>0 4)a+b+c>0 5)a-b+c>0 其中正确的是:答案是234请问为什么呢?

问题描述:

不等式ax^2+bx+c>0,解集为区间(-1/2,2),对于系数a,b,c,
则有如下结论:1)a>0 2)b>0 3)c>0 4)a+b+c>0 5)a-b+c>0 其中正确的是:
答案是234
请问为什么呢?

答:正确的答案是5),其余的四个答案都是错的.理由如下:因为不等式a(x^2)+bx+c>0,解集为区间(-1/2,2),说明二次函数y=a(x^2)+bx+c的图像是:开口向下,且与x轴的两个交点坐标分别为(-1/2,0),(2,0).所以有:a{...