用拉普拉斯变换求解方程
问题描述:
用拉普拉斯变换求解方程
y''-y'+y=0,
y(0)=0,y(1)=2
答
y的拉普拉斯变换为Y(s)
则其特征方程为
s^2-s+1=0
s1=0.5+0.5*sqrt(3)i,s2=0.5-0.5*sqrt(3)i
y(t)=C1exp(s1t)+C2exp(s2t)
=C1exp(0.5t)sin(0.5sqrt(3)t)+C2exp(0.5t)cos(0.5sqrt(3)t)
y(0)=0 ->C2=0
y(1)=2
->C1=2/exp(0.5)/sin(0.5sqrt(3))
y(t)=2exp(0.5t)sin(0.5sqrt(3)t)/exp(0.5)/sin(0.5sqrt(3))