帮下 已知sin(π/4+2a) * sin(π/4-2a) =1/4 ,a∈(π/4,π/2,求2sin^a+tana-cota-1的值.已知sin(π/4+2a) * sin(π/4-2a) =1/4 ,a∈(π/4,π/2,求2sin^a+tana-cota-1的值.a∈(π/4,π/2)
帮下 已知sin(π/4+2a) * sin(π/4-2a) =1/4 ,a∈(π/4,π/2,求2sin^a+tana-cota-1的值.
已知sin(π/4+2a) * sin(π/4-2a) =1/4 ,a∈(π/4,π/2,求2sin^a+tana-cota-1的值.
a∈(π/4,π/2)
sin(π/4+2a) * sin(π/4-2a) =(1/2)[cos4a-cos(π/2)]=1/4,
∴cos4a=1/2,
a∈(π/4,π/2),
4a∈(π,2π),
∴4a=5π/3,a=5π/12,
2(sina)^2=1-cos2a=1-cos(5π/6)=1+(√3)/2,
tana-cota=[(sina)^2-(cosa)^2]/(sinacosa)=-2cos2a/sin2a=-2cot2a=-2cot(5π/6)=2√3,
∴2sin^a+tana-cota-1=(5√3)/2. (∩_∩)答案:5√3)/2
∵sin(π/4+2a)sin(π/4-2a)=[(√2/2)cos2a+(√2/2)sin2a][(√2/2)cos2a-(√2/2)sin2a]=(√2/2)²[cos²2a-sin²2a]=(1/2)cos4a=1/4.
∴cos4a=1/2.又a∈(π/4,π/2),∴4a∈(π,2π)。于是4a=π+π/3=4π/3,即a=π/3或4a=2π-π/3=5π/3,即a=5π/12.
当a=π/3=60°时,sina=√3/2;tana=√3;cota=-√3/3,sin²a=3/4,所以2sin²a+tana-cota-1=2*3/4+√3-√3/3-1=1/2+2√3/3。
当a=5π/12=75°时,sina=(√6+√2)/4;tana=2+√3;cota=2-√3。
2sin²a+tana-cota-1=2*[(√6+√2)/4]²+(2+√3)-(2-√3)-1=5√3/2。
sin(π/4+2a) * sin(π/4-2a) =1/4则(1/2)[cos4a-cos(π/2)]=1/4cos4a=1/2a∈(π/4,π/2)2a∈(π/2,π)可见cos2a0由cos4a=2cos²2a-1=1/2 cos²2a=3/4cos2a=-√3/2 (1)又cos4a=1-2sin²2a=1/2 sin²...
sin(π/4+2a) * sin(π/4-2a) =(1/2)[cos4a-cos(π/2)]=1/4,
∴cos4a=1/2,
a∈(π/4,π/2),
4a∈(π,2π),
∴4a=5π/3,a=5π/12,
2(sina)^2=1-cos2a=1-cos(5π/6)=1+(√3)/2,
tana-cota=[(sina)^2-(cosa)^2]/(sinacosa)=-2cos2a/sin2a=-2cot2a=-2cot(5π/6)=2√3,
∴2sin^a+tana-cota-1=(5√3)/2.