已知向量a=(2cos(x/2),tan(x/2+π/4)),b=(根号2sin(x/2+π/4),tan(x/2-π/4)),f(x)=向量a*向量b,求(1)函数f(x)的最大值,最小正周期(2.) 并写出f(x)在[ 0,π ]上的单调区间

问题描述:

已知向量a=(2cos(x/2),tan(x/2+π/4)),b=(根号2sin(x/2+π/4),tan(x/2-π/4)),
f(x)=向量a*向量b,求(1)函数f(x)的最大值,最小正周期
(2.) 并写出f(x)在[ 0,π ]上的单调区间

f(x)=2cosx/2×(√2sin(x/2+π/4)+ tan(x/2+π/4)×tan(x/2-π/4)
=2cos( x/2)X[sin(x/2)+cos(x/2)]- [1+tan(x/2)]/[1-tan(x/2)]×[tan(x/2)-1]/[1+tan(x/2)] =2cos(x/2)sin(x/2)+2cos(x/2)cos(x/2)-1=sinx+1+cosx-1=sin(x+π/4)

经过化简得到f(x)=sinx+cosx,故最大值为根号2,最小正周期为2π,,在[0,π/4]增加[π /4.π ]上减

f(x)=2cosx/2×(√2sin(x/2+π/4)+ tan(x/2+π/4)×tan(x/2-π/4))
=√2[sin(x+π/4)+sin(π/4)] + [1+tan(x/2)]/[1-tan(x/2)]×[tan(x/2)-1]/[1+tan(x/2)]
=√2sin(x+π/4)
最大值=√2
最小正周期=2π
sinx的增区间是:-π/2+2kπ≤x≤π/2+2kπ
带入-π/2+2kπ≤x+π/4≤π/2+2kπ
所以增区间-3π/4+2kπ≤x≤π/4+2kπ
减区间同理