计算:-2x²y(-2xy²)²+(2xy)³·(xy²)
问题描述:
计算:-2x²y(-2xy²)²+(2xy)³·(xy²)
答
-2x^2.y(-2xy^2)^2+(2xy)^3·(xy^2)
=-8x^4.y^5+ 8x^4.y^5
=0
答
-2x²y(-2xy²)²+(2xy)³·(xy²)
原式=-2x²y·4x²y^4+8x³y³·xy²
=-8x^4y^5+8x^4y^5
=0
答
-2x²y(-2xy²)²+(2xy)³·(xy²)=-8x²y(xy²)²+8(xy)³·(xy²)=-8x²y(x²y^4)+8(x³y³)·(xy²)-8x^4y^5+8x^4y^5=0