在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是(  ) A.30° B.45° C.60° D.90°

问题描述:

在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是(  )
A. 30°
B. 45°
C. 60°
D. 90°

如图,取BC中点E,连接DE、AE、AD,
依题意知三棱柱为正三棱柱,
易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.
设各棱长为1,则AE=

3
2

DE=
1
2
,tan∠ADE=
AE
DE
=
3
2
1
2
=
3

∴∠ADE=60°.
故选C