抛掷一枚骰子,若已知出现的点数不超过3,则出现的点数是奇数的概率为?

问题描述:

抛掷一枚骰子,若已知出现的点数不超过3,则出现的点数是奇数的概率为?
我的答案是:[(1/2)*3/6]/1/2=1/2.正确答案是2/3,请问哪错了?

若已知出现的点数不超过3,
则只有1,2,3这3中情况,其他不用考虑
则2/3
不懂可以追问,谢谢!运用条件概率的算法:P(B/A)=P(AB)/P(A)。。。。设出现的点数不超过3为事件A,出现的点数是奇数为事件B。。。那么事件AB表示出现的点数不超过3且出现的点数是奇数,那么P(AB)=P(A)XP(B),P(A)=1/2,那P(B)呢?出现的点数是奇数,那么究竟是1,3,5,,三种还是只有1,3两种?我搞不懂。。只有1,3两种因为已知出现的点数不超过3,它已经假设了只能出现1,2,3这三种情况!