求含参积分 arctan x/(x*sqrt(1-x^2))
问题描述:
求含参积分 arctan x/(x*sqrt(1-x^2))
原题:∫(0->1)arctanx dx/(x*sqrt(1-x^2)) 提示利用arctanx/x= ∫(0->1)dy/(1+x^2*y^2)
答
参变量在哪儿?积分区间是什么?被积函数正确吗?已补充∫(0->1)arctanx dx/(x*sqrt(1-x^2))代入arctanx/x= ∫(0->1)dy/(1+x^2*y^2) = ∫(0->1)dx/sqrt(1-x^2)* ∫(0->1)dy/(1+x^2*y^2) 交换积分顺序 = ∫(0->1)dy * ∫(0->1)dx/(sqrt(1-x^2)* (1+x^2*y^2))做变量替换x=sina = ∫(0->1)dy∫(0->pi/2) da/(1+sin^2a*y^2) 分子分母除以cos^2a,再做变量替换x=tana = ∫(0->1)dy∫(0->无穷)dx/((1+y^2)*x^2+1) = ∫(0->1)dy arctan(sqrt(1+y^2)*x)/sqrt(1+y^2)|上限无穷下限0 = pi/2*∫(0->1))1/sqrt(1+y^2)dy =pi/2*ln(y+sqrt(1+y^2))|上下1下限0 =pi/2*ln(1+sqrt(2))。