1与0交替排列,组成下面形式的一串数101,10101,1010101,101010101,…,请你回答:在这串数中有多少个质数?并证明你的结论.
问题描述:
1与0交替排列,组成下面形式的一串数101,10101,1010101,101010101,…,请你回答:在这串数中有多少个质数?并证明你的结论.
答
知识点:本题考查的是质数与合数,解答此题的关键是利用分类讨论的思想进行解答.
显然101是质数,假设有n个1的数为An,首先A1是一个质数,当n≥2时An均为合数,当n为偶数时,显然An能被101整除,当n为奇数时,An×11=111…1(共2n个1),再将它乘以9得999…9(共2n个9),即102n-1,即An=102n−199...
答案解析:假设有n个1的数为An,首先A1是一个质数,再根据n≥2时An均为合数,分n为偶数与奇数两种情况进行讨论.
考试点:质数与合数.
知识点:本题考查的是质数与合数,解答此题的关键是利用分类讨论的思想进行解答.