在Rt△ABC中,AC=4,BC=3,∠C=90°,D,E分别为AC,AB边上的点,且DE∥BC,沿DE将△ADE折起(记为△A1DE),使二面角A1-DE-B为直二面角. (1)当E点在何处时,A1B的长度最小,并求出最小值; (2
问题描述:
在Rt△ABC中,AC=4,BC=3,∠C=90°,D,E分别为AC,AB边上的点,且DE∥BC,沿DE将△ADE折起(记为△A1DE),使二面角A1-DE-B为直二面角.
(1)当E点在何处时,A1B的长度最小,并求出最小值;
(2)当A1B的长度最小时,求二面角A1-BE-C的大小.
答
(2)过D 作DH⊥AE于H,连接A1H,∵A1D⊥ABC∴A1H⊥AE
∴∠A1HD是二面角A1-BE-C的平面角
tan∠A1HD=
=
=
,∴∠A1HD=arctan
.
二面角A1-BE-C的大小为arctan
.
(1)∵DE∥BC,∴CD⊥DE,A1D⊥DE,∴∠CDA1为二面角A1-DE-B的平面角,∴∠CDA1=90°
设CD=x,AD=4-x,则A1B2=BC2+CD2+DA12=2x2-8x+25=2(x-2)2+17
当x=2时,即D为CA中点,此时E为BA中点时,AB有最小值
17 |
(2)过D 作DH⊥AE于H,连接A1H,∵A1D⊥ABC∴A1H⊥AE
∴∠A1HD是二面角A1-BE-C的平面角
tan∠A1HD=
A1D |
DH |
2 | ||
|
5 |
3 |
5 |
3 |
二面角A1-BE-C的大小为arctan
5 |
3 |