在△ABC中,已知sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=cos^2(B/2).求证cot(A/2).cot(B/2).cot(C/2)成等差数列

问题描述:

在△ABC中,已知sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=cos^2(B/2).求证cot(A/2).cot(B/2).cot(C/2)
成等差数列

sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=cos^2(B/2) ½* (cosA+cosC) - 2 sin^2(B/2)=0 cos(A+C)/2 * cos(A-C)/2 - sin^2(B/2)= sin^2(B/2) sin(B/2)*[ cos(A-C)/2 - cos(A+C)/2] = sin^2(B/2) sin(B/2)*sin(A...