刘老师 三阶矩阵A的各行元素只和为3.秩为1.则矩阵的3个特征值分别为多少,这个怎么求?
问题描述:
刘老师 三阶矩阵A的各行元素只和为3.秩为1.则矩阵的3个特征值分别为多少,这个怎么求?
答
A的各行元素只和为3
说明 (1,1,1)^T 是A的属于特征值3的特征向量
(用定义乘一下即知)
知识点:
r(A)=1A可表示为αβ^T, 其中 α,β 为n维非零列向量
且 A 的特征值为 β^Tα,0,0,...,0
所以题目中A的特征值为 3,0,0.这是定理, 证明很麻烦, 一般承认它不证明特征向量