已知函数f(x)=1+sin2x,g(x)=(√2)sin(x+π/4),x∈[-π/2,π/2]

问题描述:

已知函数f(x)=1+sin2x,g(x)=(√2)sin(x+π/4),x∈[-π/2,π/2]
(1)求满足f(x)=g(x)的x值的集合
(2)求函数f(x)/g(x)的单调递增区间

(1)f(x)=1+sin2x=1+2sinxcosx g(x)=(√2)sin(x+π/4)=sinx+cosx
1+2sinxcosx=sinx+cosx
(sinx+cosx)^2=sinx+cosx
sinx+cosx=1或sinx+cox=0
(√2)sin(x+π/4)=0或1
因为x∈[-π/2,π/2]
所以x=-π/4或0或π/2
(2)f(x)/g(x)=[(sinx+cosx)^2]/sinx+cosx=sinx+cosx=(√2)sin(x+π/4)
令-π/2+2kπ≤x+π/4≤π/2+2kπ
-3π/4+2kπ≤x≤π/4+2kπ,k∈Z
因为x∈[-π/2,π/2]
所以单调递增区间为[-π/2,π/4]
楼上的 你没注意x∈[-π/2,π/2]阿