若sin2α+2sin2β=2cosα,y=sin2α+cos2β的最大值为M,最小值为m.求M+m.2α和2β均为平方α、β
问题描述:
若sin2α+2sin2β=2cosα,y=sin2α+cos2β的最大值为M,最小值为m.求M+m.
2α和2β均为平方α、β
答
y = (sinα)^2 + (cosβ)^2 = (sinα)^2 + [1 - (sinβ)^2] (利用sin^2+cos^2=1) = (sinα)^2 + [1 - (cosα - 1/2*(sinα)^2)] (利用条件) = 1 - (cosα)^2 + 1 - cosα + 1/2 - 1/2*(cosα)^2 (利用sin^2+c...