若在[a,b]上有f(x)≤g(x)且 ∫ f(x)dx=∫ g(x)d

问题描述:

若在[a,b]上有f(x)≤g(x)且 ∫ f(x)dx=∫ g(x)d
若在[a,b]上有f(x)≤g(x)且 ∫ f(x)dx=∫ g(x)dx证明f(x)≡g(x)(那个是定积分)