如图,在Rt△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上点D处,且使ED⊥BC. (1)猜测AE与BE的数量关系,并说明理由; (2)求证:四边形AEDF是菱形.
问题描述:
如图,在Rt△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上点D处,且使ED⊥BC.
(1)猜测AE与BE的数量关系,并说明理由;
(2)求证:四边形AEDF是菱形.
答
(1)AE=12BE.理由如下:Rt△ABC中,∠A=60°,得∠B=30°.则在Rt△BDE中有DE=12BE.由对折可知AE=DE,则AE=12BE.(2)证明:由∠C=90°,ED⊥BC得DE∥AC,∴∠DFC=∠EDF=∠A=60°,∴DF∥AE.∴四边形AEDF是平行...