1.求不定积分∫(x^2)dx/(x-1),∫xsin(x^2+1)dx 2.已知∫f(x)dx=xe^x+才,则f(x)=
问题描述:
1.求不定积分∫(x^2)dx/(x-1),∫xsin(x^2+1)dx 2.已知∫f(x)dx=xe^x+才,则f(x)=
答
∫(x^2)dx/(x-1)=∫((x^2)-1+1)dx/(x-1)∫(x+1+1/(x-1))dx =1/2*x^2 +x +ln(x-1)+C∫xsin(x^2+1)dx =1/2∫sin(x^2+1)d(x^2+1)=-1/2cos(x^2+1)∫f(x)dx=xe^xf(x) =(xe^x)'=(x+1)e^x...