若F1,F2是椭圆 x2/a+ y2/b=1 (a>2b>0)的两个焦点,分别过F1,F2作倾斜角为45度的两条直线与椭圆相交于四点,以该四点为顶点的四边形和以椭圆的四个顶点为顶点的四边形的面积比等于2√2/3,则该椭圆的离心率是——

问题描述:

若F1,F2是椭圆 x2/a+ y2/b=1 (a>2b>0)的两个焦点,分别过F1,F2作倾斜角为45度的两条直线与椭圆相交于四点,以该四点为顶点的四边形和以椭圆的四个顶点为顶点的四边形的面积比等于2√2/3,则该椭圆的离心率是——