解-log2^[9^(x-1)-5]=-log2^[3^(x-1)-2]-2
问题描述:
解-log2^[9^(x-1)-5]=-log2^[3^(x-1)-2]-2
答
-log2^[9^(x-1)-5]=-log2^[3^(x-1)-2]-2
log2^[9^(x-1)-5]-log2^[3^(x-1)-2]=2
log2^{[9^(x-1)-5]/[3^(x-1)-2]}=2
[9^(x-1)-5]/[3^(x-1)-2]=4
设u=3^(x-1)
得(u^2-5)/(u-2)=4,u1=3,u2=1
x1-1=1,x2-1=0
x1=2,x2=1